23 research outputs found

    Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1)

    Get PDF
    Experiment outputs are now available from the Coupled Model Intercomparison Project's sixth phase (CMIP6) and the past climate experiments defined in the Palaeoclimate Modelling Intercomparison Project's fourth phase (PMIP4). All of this output is freely available from the Earth System Grid Federation (ESGF). Yet there is overhead in analysing this resource that may prove complicated or prohibitive. Here we document the steps taken by ourselves to produce ensemble analyses covering past and future simulations. We outline the strategy used to curate, adjust the monthly calendar aggregation and process the information downloaded from the ESGF. The results of these steps were used to perform analysis for several of the initial publications arising from PMIP4. We provide post-processed fields for each simulation, such as climatologies and common measures of variability. Example scripts used to visualise and analyse these fields are provided for several important case studies

    Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination

    Get PDF
    : Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI) bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance) and atmospherically corrected (surface reflectance) images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence) and non-parametric (decision tree) approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms

    A General Method to Normalize Landsat Reflectance Data to Nadir BRDF Adjusted Reflectance

    Get PDF
    The Landsat satellites have been providing spectacular imagery of the Earth\u27s surface for over 40 years. However, they acquire images at view angles ±7.5° from nadir that cause small directional effects in the surface reflectance. There are also variations with solar zenith angle over the year that can cause apparent change in reflectance even if the surface properties remain constant. When Landsat data from adjoining paths, or from long time series are used, a model of the surface anisotropy is required to adjust all Landsat observations to a uniform nadir view (primarily for visual consistency, vegetation monitoring, or detection of subtle surface changes). Here a generalized approach is developed to provide consistent view angle corrections across the Landsat archive. While this approach is not applicable for generation of Landsat surface albedo, which requires a full characterization of the surface bidirectional reflectance distribution function (BRDF), or for correction to a constant solar illumination angle across a wide range of sun angles, it provides Landsat nadir BRDF-adjusted reflectance (NBAR) for a range of terrestrial monitoring applications. The Landsat NBAR is derived as the product of the observed Landsat reflectance and the ratio of the reflectances modeled using MODIS BRDF spectral model parameters for the observed Landsat and for a nadir view and fixed solar zenith geometry. In this study, a total of 567 conterminous United States (CONUS) January and July 2010 Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper (ETM+) images that have swath edge overlapping paths sensed in alternating backscatter and forward scattering orientations were used. The average difference between Landsat 5 TM and Landsat 7 ETM+ surface reflectance in the forward and backward scatter directions at the overlapping Landsat scan edges was quantified. The CONUS July view zenith BRDF effects were about 0.02 in the Landsat visible bands, and about 0.03, 0.05 and 0.06, in the 2.1 μm, 1.6 μm and nearinfrared bands respectively. Comparisons of Landsat 5 TM and Landsat 7 ETM+ NBAR derived using MODIS BRDF spectral model parameters defined with respect to different spatial and temporal scales, and defined with respect to different land cover types, were undertaken. The results suggest that, because the BRDF shapes of different terrestrial surfaces are sufficiently similar over the narrow 15° Landsat field of view, a fixed set of MODIS BRDF spectral model parameters may be adequate for Landsat NBAR derivation with little sensitivity to the land cover type, condition, or surface disturbance. A fixed set of BRDF spectral model parameters, derived from a global year of highest quality snow-free MODIS BRDF product values, are provided so users may implement the described Landsat NBAR generation method

    On the use of polarimetry and interferometry for SAR image analysis

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Defining pyromes and global syndromes of fire regimes

    No full text
    Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes—size, frequency, intensity, season, and extent—and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict

    Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination

    Get PDF
    Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI) bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance) and atmospherically corrected (surface reflectance) images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence) and non-parametric (decision tree) approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms

    Classification with multitemporal polarimetric SAR data

    Get PDF
    Multitemporal measurements gathered by EMISAR over the Foulum (Jutland) test site and AirSAR over the Wageningen test site provide an unrivalled opportunity to examine the factors affecting classification of northern European agricultural crops using both polarimetric and multitemporal information. Data analysis, guided by physical principles, has been used to investigate those polarimetric features most adapted to separating different classes of crops (with the emphasis on C band data). This has led to a hierarchical approach in which broad classes (e.g., spring vs. winter crops) are successively subdivided into more specific classes using the most appropriate polarimetric features. This direct scheme has been linked to statistical methods in order to permit adaptivity of the decision boundaries. Its performance is compared with data-driven methods as a function of the temporal evolution of the crop state.
    corecore